The repetition of large-earthquake ruptures.
نویسنده
چکیده
This survey of well-documented repeated fault rupture confirms that some faults have exhibited a "characteristic" behavior during repeated large earthquakes--that is, the magnitude, distribution, and style of slip on the fault has repeated during two or more consecutive events. In two cases faults exhibit slip functions that vary little from earthquake to earthquake. In one other well-documented case, however, fault lengths contrast markedly for two consecutive ruptures, but the amount of offset at individual sites was similar. Adjacent individual patches, 10 km or more in length, failed singly during one event and in tandem during the other. More complex cases of repetition may also represent the failure of several distinct patches. The faults of the 1992 Landers earthquake provide an instructive example of such complexity. Together, these examples suggest that large earthquakes commonly result from the failure of one or more patches, each characterized by a slip function that is roughly invariant through consecutive earthquake cycles. The persistence of these slip-patches through two or more large earthquakes indicates that some quasi-invariant physical property controls the pattern and magnitude of slip. These data seem incompatible with theoretical models that produce slip distributions that are highly variable in consecutive large events.
منابع مشابه
Large Earthquake Triggering, Clustering, and the Synchronization of Faults
Large earthquakes are sometimes observed to trigger other large earthquakes on nearby faults. The magnitudes of the calculated Coulomb stress transfers presumed to cause the triggering are 10 –10 3 of the earthquake stress drops. The earthquake stress drops and the triggering delay times are similarly small with respect to the natural recurrence time of the earthquakes. This requires that both ...
متن کاملPredominance of Unilateral Rupture for a Global Catalog of Large Earthquakes
The manner in which an earthquake rupture propagates across a fault reflects both the initial properties of the fault and the dynamical stresses produced by the rupture. We quantify the propagation of an earthquake rupture using the second moments of the earthquake space–time distribution. In particular, the second moments provide a simple way to differentiate between approximately bilateral an...
متن کاملPossible Earthquake Rupture Connections on Mapped California Faults Ranked by Calculated Coulomb Linking Stresses
Probabilistic seismic hazard assessment is requiring an increasingly broad compilation of earthquake sources. Fault systems are often divided into characteristic ruptures based on geometric features such as bends or steps, though events such as the 2002 M 7.9 Denali, and 2011 M 9.0 Tohoku-Oki earthquakes raise the possibility that earthquakes can involve subsidiary faults and/or rupture through...
متن کاملGeomorphic features of surface ruptures associated with the 2016 Kumamoto earthquake in and around the downtown of Kumamoto City, and implications on triggered slip along active faults
The ~30-km-long surface ruptures associated with the Mw 7.0 (Mj 7.3) earthquake at 01:25 JST on April 16 in Kumamoto Prefecture appeared along the previously mapped ~100-km-long active fault called the Futagawa-Hinagu fault zone (FHFZ). The surface ruptures appeared to have extended further west out of the main FHFZ into the Kumamoto Plain. Although InSAR analysis by Geospatial Information Auth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 93 9 شماره
صفحات -
تاریخ انتشار 1996